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The solution of some two-dimensional nonstationary problems on the motlon of 
two plane pistons in % polytroplc gas are construoted. 

r. Let the polvtropic gas with the equation of state P = uzpy (p is 
the pressure, p the density, 
rest St the initial Instant t 9'0 

the %di%b%tfc Index, fP= const) be at 
wlthln some dlhadral angle farmed by the 

two lnter$ectlng planes P, and P, , the angle 0 between them aatlsfying 
the relation 0 < Q 5 )n . We shall consider the problem of determining the 
nonstationary plane flows which ar2ee Itn the gas When the planes P, and P,, 
which play the role of pistons, beglr. at the Instant C I 0 to move out of 
the gab at the constant velocities vX and vgJ respectively. The resulting 
flows are two-dimensional and self-similar, so th%t the components tcy and 
up of the velocfty vector and the acoustic speed C whfch are to be deter- 
mined depend on the two independent self-sin&lax? variables 
5, = x8 / t, where x, and xp 

E, == xl j t, 
are plane Cartesian coordinates. We assume 

here that the flows are free of shock waves and contact dlscontinultles, and 
are therefore Isentropic and potential. Their potentiality follows from 
Thomson’s theorem, which Is valid In this case by virtue of the fact that 
the flows contaln weak dlscontinuities only. 

In the case where the planes P, and P, beglin to wlthdraw according to 
an arbitrary law, the solution of the problem can be sought in the class 
of double waves. The authors of [l] srtlved the problem of the motion of two 
mutrually perpendicular pfstons itecordlng to an arbitrary law in an isothermal 
gas in the class of double waves. They also formulated the Gourset problem 
for the double wave equation for the motion of two pistons in a polytropic 

itkt 
Solution of the Qoursat problem alone, however, generally does not 

construction of a complete picture of the motion even with the slm- 
pleat laws of piston motion. !l%ls is because the domafns of definition of 
the Ootisat problem usually do not coincide with the natural domsins of 
definition of the flowa In either the physical spruce xl, x1 t, or in the 
hodograph plane, and aomprise but a portion of the latter. It Is necessary 
therefore, to pose 8dditlonal problems in order to fill out the entire domain 
of flow definition. The prcdent paper Is devoted precisely to the posing of 
such supplementary problema and to the study of possible flow COnffgUr%tiOns 
arising due to the speolflc discontinuity decomposition which occurs when 
the pistons begin to move with constant velocitlea, The flow region here 
consists of the regiona of the double self-slmllar waves and simple w%veB, 
and the regions of Constant m5tlon. The Doursat problem and the mixed prob- 
lems for the double W8Ve equation are solved numerically by the method of 
characteristics as 10% as We double wave equation is of the hyperbolic type. 
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The uae of the method of aharacterlstics in the hyperbolic case permits 
complete solution of several problem8 on the motion of pistons when a vacuum 
zone arises in the region adjacent to the Line where the planes P, and 
P, Intersect. A vacuum zone may not arise In the general Case with small 
velocltlea V, and VP (as compared with acoustic speed in the unperturbed 
gas), however, in which case a line of paraboliclty of the double wave equa- 
tion and beyond It a region of ellipticity of this equation generally arise 
in the neighborhood of the line I In the present paper, we shall concern 
ourselve8 only with the regions where the equatlon under consideration is 
hyperbolic, 

The particular ca8e of our problem where one of the planes P,, P, remains 
motionless while the other Is moving with an infinite velocity (efflux into 
a vacuum) Is considered in [2]. Analogous particular problems for three- 
dimensional self-similar flow are studled in 131. The problem of uniqueness 
of the solutions will not be dealt with. 

P. Let ua consider the problem of contiguity of flows of the double and 
simple wave type, and some of the properties of flows in the event of such 
contiguity which we shall need befcw. The systems of e uations des%rlblng 
simple and double waves for the self-similar case (see 9 4 and 51) can be 
written as 

U1'2 + Ua'Z = 1, ml's1 + UZ'G - (Y+!~ 8 + UIUl'-j- U&) =O (2.1) 

for simple waves, and a8 

Here 2 ao a"-8 
zti=ui@), @=r_lC, fri=,,i, e,i,= ~ aU.iaUk 

the prime Indicating differentiation with respect to 0 . 
Simple waves in the hodograph plane ul, ua 

curve Itug, ua> = 0 ; 
have a certain corresponding 

double wave8 have a correspondlng region s in which 
the function FS - @(u,, us) is defined. 

The category to which Equatlon (2.2) belongs Is determined by the sign of 
the expression A = @ala+ @la_ 1 , For R > 0 , Equation (2.2) is of the 
hyperbolic type. 

The equations of the characteristic strip for (2.2) are 

(1 - e,2)dU,2 - 281B,du,du, + (1 - @,a) &,2 = 0 

de == 8,du, + 43,du, 

(2.4) 

f2.51 

P r o p e r t y 2.1. If the curve Y(u~, IL,> - 0 In the hodograph 
plane corresponds to some simple wave which is contiguous to the double wave 
region along It, then characteristic equation (2.4) la satisfied along this 
curve, 

This property follows from the relation 

(e,dul + e,du2p --= dli,2 + dq. (2.7) 
which is a consequence of (2.1) 
in paaafng through the curve rfu 

(2.5) since the function P Is continuous 
1,ug -0. I 

We note that in the case of an arbitrary simple wave, the existence of 
Q1 and BP such that condition (2.6) is fulfilled cannot be guaranteed for 
the entire specified wrve y(u,, uz) - 0 . 

In fact, let us fir in the plane cl, Ca some point fro, faff with 
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specified ul", us', 0' through which the line separating the simple and 
double wave regions passes. Then, replacing 8x by @e In accordance with 
(2.5)) we obtain from (2.6) the following ordinary nonlinear differential 
equation for the function @ : 

2 (Efp - cp) 0; _1- (022 - 1) (e, -- (p) -c- + 
1 - (p” 

i 

+ (r---1)@ 
~_[(~-~3)(1+8~'-2~~~)+4(1-~~)]=0 

Here Q acts as the independent varlable, 
(2.3) are of the form ~)2(~o)=,020 , 

the lnltlal data obtalned from 
and u2'= ~(0) Is an arbitrary function. 

Thus, it can generally be asserted that @!a Is defined only In some nelgh- 
borhood of the point @. However, as we shall see below, in the case of 
our two-piston problem the simple waves to which the double wave must be 
made contiguous are of special form, and characteristic strip condltlon(2.6) 
Is fulfilled for all ? , I.e. along the entire line Y(ul, us) - 0 . 

We note that Formula (2.7) Implies the Inverse property: 
istic of Equation (2.2) corresponds to some simple wave. 

any character- 

P r o p e T t y 2.2. If the curve Y(u~, ua) corresponds to a simple 
wave, being the first-family characterlstlc for the double wave equation, 
then the equlpotentlal lines of the principal quantities In the simple wave 
(straight lines In the plane ?I!2 (2.1)) t ouch the second-famlly character- 
istics at the points of the contiguity curve which corresponds to the curve 
Y(U 11 u2 1 = 0 In the plane FIT2 . 

Parametrically, the second-family characteristics are given by Equations 

~~'&n?o'li"'~" %e?~he'~ectors 
are replaced by their corresponding expressions 

". (b # 6up) and (dul, dus) determine the 
directions of the tangents to the characterlstlcs of the first and second 
famllles In the plane ul, uz, respectively. Expressions (2.1) Imply that 
In order to prove the foregoing property it 1s sufficient to verify the 
relation 

I' = Bu,& + had%, = 0 (2.8) 

where the differentials dS,, d<a correspond to the second-family character- 
13tic3. Representing P as 

and making use of relations (2.4) to (2.6) and Formula 

6Ul du1 l--&2 --== 
6uz duz l-8812 

which follows from (2.4), we flnally obtain 

r __6un Y---1 wa 
dul ?!-i 

[ (1 - @la) du? + (I - ha) dua2 - 28& dulduz] = 0 

P r 0 p e r t y 2.3. If the double wave Is contiguous with a one- 
dimensional simple Rleman wave of the form 

where a, and 8, are constant and c 2+ caa- 1 (by a rotatlon the coordl- 
nate axes, this case readily reduces io'that where, for example, up= 0 ), 
then the line of contiguity Is analytically determinate In the plane 515Z' 

In fact, making use of the relations for 
from (2.9), 

cl# 0 and as # 0 which follow 

Olul a1 -=----) 
duz 

ale1 + azes = 4, del=_aa 
aa 

(2.10) 
ati a1 

we reduce Equation (2.6) to the form 



de9 a1s --(l--a&~)8--a~~(1-9~a~) 
(r - 3) [alp&a + (1 - a&#] +4ziz1 + 

aa de _O --- 
7 - 1 8 

Integrating (2.111, we obtain 
Y-3 

(7-33)[Bsa+ (!z!$)‘]+4+cB;=i=o (r#3) 

&e+-% er+he+c=o (T=3) 
1 a2 

(2.11) 

(2.12) 

(2.13) 

where C la an Integration constant determined from the conditions of the 
problem. Formulas (2.3) then lnnnedlately Imply the equations giving the 
line of contiguity in parameterlc form 

4i.c CQe + pi + q eei (2.14) 

where 8i must be replaced by their express%ons in terms of 9 In accordance 
with Formulas (2.10) and (2.12), and where 9 acts as a parameter. 

1. Let us now describe the method of solving the problem stated In the 
introduction. 

We first consider the question a8 to the conditions which the function 
@(U, 
tionj . 

u,) describing the double wave must satisfy at the movable wall (pis- 
I.& the equation of motion of the rectilinear movable wall at the 

coordinates Sir ta be of the form 

a&l -I- a,& + s3 = 0, ai = const (3.1) 

Its normal velocity is 1 a3 I/Jf@ + a,a. From the condition of no gas flow 
through the wall we have 

alul + uaua + a3 = 0 (3.2) 

Substituting <a according to Formulas (2.3) into (3.11, we have the con- 
dltlon 

u,& + a,e, = 0 (3.3) 

for the function 8 in the hodograph plane along the line (3.1). 

Let us consider the region of Interference of the simple Rlemann waves 
(Flg.1) which arl8es upon withdrawal of the two plane pistons, the. angle a 
between which Is acute, at the coXMtant velocities V, and Va . The acous- 
tic speed C, In the unperturbed gas which prior to the beginning of motion 
occupies a dihedral angle bounded by the planes x1- 0 and x1- xxcot u 
at t I 0 la assumed to be 1 . 

oc v s 2/(y -1) 
It la therefore necessary to consider the 

%zs with the case V 
,_ &nEelhe case Vi> 2 / (V - 1) (t - 1, 2) coln- 

, and leads to the problem of gas efflux 
Into the vacuum from the dihedral angle whose Walls are instantaneously at 
the instant t - 0 . 

It 1s clear that at sufficient distances away from the line where the 
pistons intersect, when t - to and V c 2/(v - 1) one-dimensional motions 
will occur near the moving walls, and !&at the Wall; will be contiguous with 
the steady-flow regions which are contiguous with the Rlemann wave regions 
at the weak dlscontlnultles (the lines OF and D,F1) . The Rlemann dis- 
charge waves, here self-similar, will, In tUrn, be contiguous with the gas 
at rest at the second weak dlscontlnultles (the lines EM and ENI). The 
equations of the movable Wall8 OC and OC, In the coordinates t1 and t1 
are then 

E1 = - VI, cos c& - sin a& - V, = 0 (3.4) 
The equations of the lines DE 

AJroperty 2.3) . 
and DIE can be written In expllclt form 

It Is true that in order to find the equation of the curve 
it is necessary Instead Integrating Equation (2.6), which is ln this 

casd Identically fulfilled along DE(& - 
(2.2) directly. 

1, up- 0) , to Integrate Equation 
The latter reduces to an ordinary equation on DE by virtue 

of the relation 
de1 = 9,&r, + &,du, 
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Finally, for the curve DE we have the parametric equations (for y# 3) 

where the Integration constant 

(3.6) 

1s determined from the condition of passage of the integral curve throu. h 
the Point E (1, cot i Q ) lying on the bisector of the angle COC, , Here 

8 =2/(y- 1) at the point E, 8 = 2 /(y - 1) - V, at the point D 

In exactly the same way, for y - 3 we Integrate (2.2) along DE to 
obtain 

41=28--i, 52 = 8 1/ co+ (a / 2) - 2 In 8 (3.7) 

Analogous equations which follow from Formulas (2.12) to (2.14) can also 
be written for the curve DIE . The radicand In Formula (3.5) for 

2 2 
r--1 

-Vv,,<9,<- 
7-1 

and In Formula (3.7) for any 0 c Q + &T Is positive, so that the double 
waves can be contiguous with the simple Rlemann wave along all of DE (the 
same applies to DIE). 

In Fig. 1 (and then In Figs. 3, 5,7) the regions denotedbythe number 
corres ond 

kber (27 
to the regions of steady flow or rest, those denoted by the 

to simple wave regions, and (3) to double wave regions, For 
the problem under consideration, we always construct a solution in which 

regions of the t pe 
of the type (2 7 

(1) are contiguous with regions Of the t 
are contiguous with regions of the type 

of the type (3) are not directly contl uoua with regions of the type 
Then, in accordance with Property 2.2, & he lines CD and CID, are straight 
lines tangent to the curves DE and D,E at the points D and D . 

In the region dDkDXt3,, the 
Goursat problem for equation (2.2) 
must be solved with data on the 
characteristics DE and D,E. In 
regions (3) touching the points 
C and C,, It Is necessary to solve 
mixed problems with data on the 
characteristics CS and C,S, wd 
conditions of the type (3.3) at 

u, 
D’ E’ 

UI 

0 
4’ 

Fig. 1 Fig. 2 
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the walls OC and OC,, 

The form of the characteristics C.9 and CIS, 1s determined after solving 
the Goursat problen and constructing simple waves in the regions SUM and 

by means of the solution of the Cauchy problem for ordinary equa- 
with the Initial data @-@Jam , Oa-O,O, respectively, at the points 

@lo*+ e,w> 1 fOf Vi ~ 2 / (Y - I), Y> 1, 0 <cc < ‘lzJI (3.8) 

in all cases. 
Inequality (3.8) need only be roved for the olnt C andarbitrary V,,y, 

and Q. from the indicated region zi condition (3.8 will P then be fulfilled at 
the point C,,since the point E lies on the blsector of the angle COC, ). 

The projections of the vector 'T-(T~,?~) tangent to the 
CUPVfi DE at the point D can then be written as 

7+1 -f+i (T--)e--((r--) 
T1=-ij---, 'cz=- 4 1% -3) [(r - 4 E- (T + I)1 

(T#V (3.9) 

3-Y 

e=TAl+ 

( 
cot2 - ct 1 

)( 

_,T--1 VI Y--l 

r--3 2 2 ) 

(3.10) 

(u / 2 2) - 1 
T1= 2, 

Cd - In (1 - V,) 
72 =- 

If - 2 In - i-i7 (1 2) VI) 
(r=3) (3.11) 

by virtue of equations (3.5) and (3.7). 
Along the straight line OC,& 10. Constructihg the straight line DC 

through the point D In the direction of the vector T, In accordance with 
Formulas (2.3) at the point C we have 

ep = 0, 4320 = (y 3) - E - 4 

2 m-a [(r- 3) E-hS1N 
(T f3) (3.12) 

@lo =o, f&o= 1 
cm.2 - 2 In - 

(a / 2) (1 V,) + 
1 

2 V’ - cot* (a / 2) 2 ln (1 
(T =3) (3.13) 

- VI) 

Setting 

22 = I e - (r + 1) /(T - 3) for r#S 
&(a/2)-21n(l -VI) for y=3 

and PO for &',lndependentlyof y we have 

es0 = '/s (2 + z-l) (3.14) 

We now show that 

z>l 
2 

for o<v,<- 
T---1 

For the case 
LX&T. 

y-3 this follows directly from the formula for t",slnce 

For yf3 we consider two posslbllltles: 

We have 
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In the second case 

From (3.14) for n1 It follows that 0='>1, so that Inequality (2.8) 1s 
proved. Hence, we can always compute the mixed problem in regions of the 
type (3) touching the points C and C,, since the hyperblicity of Equation 
(2.2) has been proved. Here the straight line DC separates the steady flow 
region of the type (1) from the simple wave region SCRd. 

k=-4s Y-PC 

Fig. 3 Fig. 4 

The determination of the subsequent configuration of the flow region de- 
pends substantially on the actual values of V,,g,and 

1' 
It appears that such 

diztermination can only be effected numerically, the f ow construction algo- 
rithm requlrlng solutlon of Goursat problems and mixed problems (near the 
walls), as well the construction of simple waves, It turns out that for fixed 
c and Y in the square [0,2/ (Y-l)]tiO, 2/(y-1)] of the plane V ,V there al- 
ways exists a curve which passes through the points (0,2/(y -l),Ol and sepa- 
rates the square Into two regions. For Vi belonging to one of these re 
there always arises a vacuum zone, and, as calculations show, 
remains hyperbolic. On the line of contiguity with the vacuum 
functions @I and o. become infinite, but-in such a way that 00 
other reglon ischaracterlzedby undetached flow, but in the ne ghborhood 1 

remalns. The 
of 

the point 0 there appears a line of parabolicity of Equation (2.2),and deter- 
mination of the entire flow requires solution'of a boundar value problem 
with a portion of the data on the degeneracy (parabollclty line for Equation 
(2.2). 

Fig. 2 shows the domain ;rDgeef;:$Fion of the flow in the hodograph plane. 
The lines D'E' , Dl’E’, 
Goursat problem must be solved idtie reglon 

correspond to simple waves,the 
d’U’E’D,‘dl’, and mlxed prob- 

lens In the regions O'L)'d' and C)'D,'dl'. 

4. Given below are the results of actual computations for certain values 
of the parameters a, Y, and V, (In the region of hyperboliclty of Equation 
(2.2)). The Goursat and mixed proplems were solved by the method of Massot 
characteristics with the Iterations performed on a computer. As a rule, 



30-W computation points were taken along each charactexistic. The applied 
program made it possible to carry out “straight through computation of the 
configurations all the way to the line of contiguity with the vacuum zone 
or to the parabollcity line. 

Fig.7 Fig.8 

Figs. 3,5,and 7 show the configurations of the flow region in the coordi- 
nates i% ,Sp and indicate the behavior of the characteristics of the system 
of equations in self-slmllar var$ables which describes the given motion for 
the cases (~-n/2,~=3, VI =Va-V-0.6,0.5,0.4. The regiona of steady flow simple 
waves, and double waves are denoted by the numbers (l),(2), and (3),respec- 
tlvely. For the cases V-0.6, 0.5, a vacuum zone arisee in the nefghborhood 
of the point 0: specifically, Q-0 on the line ,4B- The P3giOW JSK and NISIK 
in Fig.5 are of the type (2). 

The case where bWJ.4 Is an example Of undetached flow. The line GG1 in 
Fig.7 is a parabollclty line; the characterZst%cs in the regkm GLG1 touch 



~.v.&Mlln ana *.~.waorov 

CC1 (In the plane cl,Fa). The regions Q TR and QITIR1 are of the type (l), 
the regions TQL and T,Q,L of the type t2), and QLG, Q,LG1, CLG, of the type 
(3). The function 0 changes little along GG, and Is equal to approximately 
0.12. The crltlcaI velocity V,-V,=V*,whlch separates the cases of the appear- 
rance of a vacuum zone and the appearance of a parabollclty line Is equal to 
0.42 for the given a and y. 

Fig.4,6,8 also show the flow regions and characteristics in the hodograph 
plane for P-0.6,0,5, 0.4. The points in the hodograph plane correapo?d$g to 
th: point? ?f tQe,pla?e $,,cl ar$ ?cc?mqanl$d,by prlmes. The lines D P , 
D, P , D, f’ , P S , p &,p A , P R,,L R , L R,, $o;re?pond to simple waves. 

The region G+G L Ox 
boliclty G ‘H’G, 

and the line of para- 

u,=-GS 
are shown on a magnified scale 

In the hodograph plane in Flg.9. The boundary- 
valueproblem for Equation (2.2) must be solved 
In the region O*C*H’&‘. As computations show 
the region of elliptlclty of Equatlon (2.2) In 
the plane u,,ua Is very small. 

The authors are grateful to V.A.Suchkov for 
hls helpful comments. 

Fig.9 
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